Interaction Effects of BDNF and COMT Genes on Resting-State Brain Activity and Working Memory

نویسندگان

  • Wen Chen
  • Chunhui Chen
  • Mingrui Xia
  • Karen Wu
  • Chuansheng Chen
  • Qinghua He
  • Gui Xue
  • Wenjing Wang
  • Yong He
  • Qi Dong
چکیده

Catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF) genes have been found to interactively influence working memory (WM) as well as brain activation during WM tasks. However, whether the two genes have interactive effects on resting-state activities of the brain and whether these spontaneous activations correlate with WM are still unknown. This study included behavioral data from WM tasks and genetic data (COMT rs4680 and BDNF Val66Met) from 417 healthy Chinese adults and resting-state fMRI data from 298 of them. Significant interactive effects of BDNF and COMT were found for WM performance as well as for resting-state regional homogeneity (ReHo) in WM-related brain areas, including the left medial frontal gyrus (lMeFG), left superior frontal gyrus (lSFG), right superior and medial frontal gyrus (rSMFG), right medial orbitofrontal gyrus (rMOFG), right middle frontal gyrus (rMFG), precuneus, bilateral superior temporal gyrus, left superior occipital gyrus, right middle occipital gyrus, and right inferior parietal lobule. Simple effects analyses showed that compared to other genotypes, subjects with COMT-VV/BDNF-VV had higher WM and lower ReHo in all five frontal brain areas. The results supported the hypothesis that COMT and BDNF polymorphisms influence WM performance and spontaneous brain activity (i.e., ReHo).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Aging Magnifies Genetic Effects on Executive Functioning and Working Memory

We demonstrate that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. We assess two common Val/Met polymorphisms, one affecting the Catechol-O-Methyltransferase (COMT) enzyme, which degrades dopamine (DA) in prefrontal cortex (PFC), and the other influencing the brain-derived neurotrophic factor (BDNF) protein. In two tasks (Wisconsin C...

متن کامل

Neuroprotective Effect of Gallic Acid on Memory Deficit and Content of BDNF in Brain Entorhinal Cortex of Rat’s Offspring in Uteroplacental Insufficiency Model

Introduction: Uteroplacental insufficiency (UPI) causes neurodevelopmental deficits affecting the intrauterine growth restricted (IUGR) offspring. This study aimed to analyze the effects of Gallic acid (GA) on memory deficit and brain-derived neurotrophic factor (BDNF) content in entorhinal cortex of UPI rat models. Methods: In this experimental study, 40 pregnant Wistar rats were randomly div...

متن کامل

Effects of harmalol on scopolamine-induced memory disorders, anxiety and depression like behaviors in male mice: A behavioral and molecular study

Introduction: Harmalol is a dihydrocarboline compound found naturally in several alcoholic beverages and medicinal plants. This study was designed to investigate the effect of harmalol on memory function and its possible mechanisms in a scopolamine-induced memory disorder model. Materials and Methods: Thirty five male mice were randomly divided into five (n=7) group: Control group )normal sali...

متن کامل

Effects of genistein and swimming exercise on spatial memory and expression of microRNA 132, BDNF, and IGF-1 genes in the hippocampus of ovariectomized rats

Objective(s): The aim of the present study was to investigate the effects of genistein and exercise on the spatial memory and expression of microRNA-132, BDNF, and IGF-1 in the hippocampus of ovariectomized rats. Materials and Methods: Sixty animals were divided into six groups of control, sham, ovariectomy (OVX), ovariectomized with 8 weeks of genistein administration (OVX.G), with 8 weeks of ...

متن کامل

Epistasis between catechol-O-methyltransferase and type II metabotropic glutamate receptor 3 genes on working memory brain function.

Dopaminergic and glutamatergic systems are critical components responsible for prefrontal signal-to-noise tuning in working memory. Recent functional MRI (fMRI) studies of genetic variation in these systems in catechol-O-methyltransferase (COMT) and in metabotropic glutamate receptor mgluR3 (GRM3), respectively, suggest that these genes influence prefrontal physiological signal-to-noise in huma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016